Enhanced limonene production in cyanobacteria reveals photosynthesis limitations.

نویسندگان

  • Xin Wang
  • Wei Liu
  • Changpeng Xin
  • Yi Zheng
  • Yanbing Cheng
  • Su Sun
  • Runze Li
  • Xin-Guang Zhu
  • Susie Y Dai
  • Peter M Rentzepis
  • Joshua S Yuan
چکیده

Terpenes are the major secondary metabolites produced by plants, and have diverse industrial applications as pharmaceuticals, fragrance, solvents, and biofuels. Cyanobacteria are equipped with efficient carbon fixation mechanism, and are ideal cell factories to produce various fuel and chemical products. Past efforts to produce terpenes in photosynthetic organisms have gained only limited success. Here we engineered the cyanobacterium Synechococcus elongatus PCC 7942 to efficiently produce limonene through modeling guided study. Computational modeling of limonene flux in response to photosynthetic output has revealed the downstream terpene synthase as a key metabolic flux-controlling node in the MEP (2-C-methyl-d-erythritol 4-phosphate) pathway-derived terpene biosynthesis. By enhancing the downstream limonene carbon sink, we achieved over 100-fold increase in limonene productivity, in contrast to the marginal increase achieved through stepwise metabolic engineering. The establishment of a strong limonene flux revealed potential synergy between photosynthate output and terpene biosynthesis, leading to enhanced carbon flux into the MEP pathway. Moreover, we show that enhanced limonene flux would lead to NADPH accumulation, and slow down photosynthesis electron flow. Fine-tuning ATP/NADPH toward terpene biosynthesis could be a key parameter to adapt photosynthesis to support biofuel/bioproduct production in cyanobacteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evanescent Photosynthesis : A new approach to sustainable biofuel production by Matthew D . Ooms A thesis submitted in conformity

Evanescent Photosynthesis: A new approach to sustainable biofuel production Matthew D. Ooms Master of Applied Science Graduate Department of Mechanical and Industrial Engineering University of Toronto 2012 Immobilization of photosynthetic cultures has been investigated as a means of generating biofuel and other high value compounds through direct conversion of CO2 and water using energy from th...

متن کامل

Metabolic engineering of cyanobacteria for the production of hydrogen from water.

Requirements concerning the construction of a minimal photosynthetic design cell with direct coupling of water-splitting photosynthesis and H2 production are discussed in the present paper. Starting from a cyanobacterial model cell, Synechocystis PCC 6803, potentials and possible limitations are outlined and realization strategies are presented. In extension, the limits of efficiency of all maj...

متن کامل

Deciphering Primordial Cyanobacterial Genome Functions from Protein Network Analysis

The Great Oxidation Event (GOE) ∼2.4 billion years ago resulted from the accumulation of oxygen by the ancestors of cyanobacteria [1-3]. Cyanobacteria continue to play a significant role in primary production [4] and in regulating the global marine and limnic nitrogen cycles [5, 6]. Relatively little is known, however, about the evolutionary history and gene content of primordial cyanobacteria ...

متن کامل

Maximizing hydrogen production by cyanobacteria.

When incubated anaerobically, in the light, in the presence of C2H2 and high concentrations of H2, both Mo-grown Anabaena variabilis and either Mo- or V-grown Anabaena azotica produce large amounts of H2 in addition to the H2 initially added. In contrast, C2H2-reduction is diminished under these conditions. The additional H2-production mainly originates from nitrogenase with the V-enzyme being ...

متن کامل

Bacterial Proliferation Reduces Sulphur Toxicity in Stabilization Ponds: Safer Water Resources by Photosynthesis

Background: Studies suggest that sulfur may react with plants or monocellular organisms, such as fungi, to produce toxic agents. It has been theorized that sulfur enters cells and affects their respiration. This study reports on a phototroph development that leads to the diminution and/or production of sulfur and release of hydrogen sulfide from public ponds. Methods: This study was conducted ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 113 50  شماره 

صفحات  -

تاریخ انتشار 2016